
Java Programming –
NoSQL and Nitrite DB

Arthur Hoskey, Ph.D.
Farmingdale State College

Computer Systems Department

© 2021 Arthur Hoskey. All
rights reserved.

Today’s Lecture

 Nitrite NoSQL Database

© 2021 Arthur Hoskey. All
rights reserved.

NoSQL Database

 A NoSQL DB does not have tables like a relational DB.

 Can be unstructured (no schemas defining the structure of
the data).

 You do not use SQL to query the database.

 SQL DBs are generally normalized while NoSQL DBs are
not.

 Relational DB Normalization

◦ Removes redundancy (no update, delete, or insert
anomalies).

◦ Must perform joins to get related data.

◦ Joins are an expensive operation on a relational DB.

 NoSQL DBs generally do not need to do join-like
operations.

© 2021 Arthur Hoskey. All
rights reserved.

NoSQL Database Software

 MongoDB (local)

 MongoDB Atlas (cloud-based)

 Google Firestore and Google Realtime DB (cloud-based)

 Cassandra (local or cloud-based)

 Amazon Dynamo DB (cloud-based)

 Nitrite (local)

 There are many others…

© 2021 Arthur Hoskey. All
rights reserved.

We will be

using this one

Nitrite

 Nitrite is an embedded NoSQL database.

 Why Nitrite?

 NoSQL Object → NO2 (the formula for nitrite).

 Embedded means there is no server process for the
database.

 The application that uses the database imports a library
that contains the functionality to manipulate the DB.

 Nitrite is document-based (similar to MongoDB).

 Link for using Nitrite:

https://www.dizitart.org/nitrite-database.html

© 2021 Arthur Hoskey. All
rights reserved.

https://www.dizitart.org/nitrite-database.html

Nitrite Document

 A document contains name-value pairs.

 It is similar to JSON in that it can contain any Java objects.

 The value in a name-value pair can be a collection of
values (like JSON).

 Here are two documents:

© 2021 Arthur Hoskey. All
rights reserved.

Document

id → 1
firstName → "John"
lastName → "Doe"
Address → "10 Broadway"
favFoods → ["pizza",

"veggies", "nuts"]

Document

id → 2
firstName → "Rose"
lastName → "Diaz"
Address → "5 Maple St"
favFoods → ["steak",

"eggs", "chocolate"]

Nitrite Collection

 A Nitrite collection contains documents.

 Nitrite collections have a unique name. The collection
below is named "persons".

© 2021 Arthur Hoskey. All
rights reserved.

Collection "persons"

Document

id → 1
firstName → "John"
lastName → "Doe"
favFoods → ["pizza",

"veggies", "nuts"]

Document

id → 2
firstName → "Rose"
lastName → "Diaz"
favFoods → ["steak",

"eggs", "chocolate"]

docs…

Relational vs NoSQL

 Relational DB
◦ Store data in tables

◦ Try to eliminate redundancy of data using normalization

◦ Use joins to retrieve related data from different tables

 NoSQL DB
◦ Uses some type of document to store data (specifics differ depending

on the NoSQL DB)

◦ Use key-value pairs (in general)

◦ Keep collections of documents

◦ Can have redundant data

© 2021 Arthur Hoskey. All
rights reserved.

Maven Nitrite Dependency

 Add the following dependency to Maven to use Nitrite:

<!-- https://mvnrepository.com/artifact/org.dizitart/nitrite -->

<dependency>

<groupId>org.dizitart</groupId>

<artifactId>nitrite</artifactId>

<version>3.4.4</version>

</dependency>

© 2021 Arthur Hoskey. All
rights reserved.

Open or Create Database

 Use the Nitrite class to create or open a database.

// Create DB in default directory

Nitrite db = Nitrite.builder()

.filePath("./hello.db")

.openOrCreate();

// Create DB in another directory

Nitrite db = Nitrite.builder()

.filePath("/tmp/hello.db")

.openOrCreate();

© 2021 Arthur Hoskey. All
rights reserved.

The name of the database is

hello. The database will be

created in the tmp directory. The

tmp must exist for this to work

otherwise an exception is thrown

The name of the database

is hello. It is created in the

current working directory

(default directory)

Close Database

 You should close the database when you are done using it.

 For example (assumes db is declared with Nitrite as the
data type):

db.close();

© 2021 Arthur Hoskey. All
rights reserved.

Close the DB

Add Data to a NitriteCollection

 NitriteCollection - Kind of similar to a table in a relationalDB.

 Document – Data for one entity in the database (like one object).

NitriteCollection collection = db.getCollection("persons");

Document doc = createDocument("id", 1)

.put("firstName", "John")

.put("lastName", "Doe");

// insert a document into the collection

collection.insert(doc);

© 2021 Arthur Hoskey. All
rights reserved.

persons is the

name of the

collection

Create collection using getCollection

(db is an instance of Nitrite)

Insert the

document into

the collection

Create document using

createDocument (new is called

inside createDocument)

Query the DB (all documents)

 Use find method to query the Nitrite DB.

 Find returns documents from a collection.

 The documents are returned in a Cursor.

 You can write code to iterate over the Cursor results.

 Cursor import. Make sure you import the following for the
Cursor: import org.dizitart.no2.Cursor;

Cursor results = collection.find();

for (Document currDoc : results) {

System.out.println(currDoc.toString());

}

© 2021 Arthur Hoskey. All
rights reserved.

Iterate overall results

Find returns a Cursor

Query the DB (using a criteria)

 Use find with a filter to retrieve records by a given criteria.

Cursor results = collection.find(Filters.eq("firstName", "Jane"));

for (Document currDoc : results) {

System.out.println(currDoc.toString());;

}

© 2021 Arthur Hoskey. All
rights reserved.

Use a Filters class to set the criteria

of documents to retrieve

Removing Documents from a
Collection

 Use remove to delete documents from a collection.

 You can specify documents to remove using specific criteria
(remove all records that have a certain value).

 You can remove all documents from the collection.

collection.remove(eq("firstName", "John"));

collection.remove(Filters.ALL);

© 2021 Arthur Hoskey. All
rights reserved.

Removes all documents

with "John" as first name

from the collection

Removes all documents

End of Slides

 End of Slides

© 2021 Arthur Hoskey. All
rights reserved.

	Default Section
	Slide 1: Java Programming – NoSQL and Nitrite DB
	Slide 2: Today’s Lecture
	Slide 3: NoSQL Database
	Slide 4: NoSQL Database Software
	Slide 5: Nitrite
	Slide 6: Nitrite Document
	Slide 7: Nitrite Collection
	Slide 8: Relational vs NoSQL
	Slide 9: Maven Nitrite Dependency
	Slide 10: Open or Create Database
	Slide 11: Close Database
	Slide 12: Add Data to a NitriteCollection
	Slide 13: Query the DB (all documents)
	Slide 14: Query the DB (using a criteria)
	Slide 15: Removing Documents from a Collection
	Slide 16: End of Slides

